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Slow light in saturable absorbers: Progress in the resolution of a controversy
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There are two opposing models in the analysis of the slow transmission of light pulses through saturable
absorbers. The canonical incoherent bleaching model simply explains the slow transmission by combined effects
of saturation and of noninstantaneous response of the medium resulting in absorption of the front part of the
incident pulse larger than that of its rear. The second model, referred to as the coherent-population-oscillations
(CPO) model, considers light beams whose intensity is slightly pulse modulated and attributes the time delay
of the transmitted pulse to a reduction of the group velocity. We point out some inconsistencies in the CPO
model and show that the two models lie in reality on the same hypotheses, the equations derived in the duly
rectified CPO model being local expressions of the integral equations obtained in the incoherent bleaching
model. When intense pulses without background are used, the CPO model, based on linearized equations,
breaks down. The incoherent bleaching model then predicts that the transmitted light should vanish when
the intensity of the incident light is strictly zero. This point is confirmed by the experiments that we have
performed on ruby with square-wave incident pulses and we show that the whole shape of the observed pulses
agrees with that derived analytically by means of the incoherent bleaching model. We also determine in this
model the corresponding evolution of the fluorescence light, which seems to have been evidenced in other
experiments.
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I. INTRODUCTION

The group velocity is a basic concept in the study of
the propagation of coherent light pulses of slowly varying
amplitude in a linear, time-independent, dispersive medium.
It is invariably introduced in every review on slow and fast
light (see, e.g., [1,2]). Expressing that the phase of the optical
field is stationary at the frequency ωc of the pulse carrier, it is
given without any ambiguity by the relation:

vg(ωc) = c

n(ωc) + ωcdn/dωc

, (1)

where c is the light velocity in vacuum, n(ω) designates the
refractive index at the optical frequency ω, and dn/dωc is a
short-hand notation of its derivative for ω = ωc. Slow light
is obtained when dn/dωc takes large positive values (steep
dispersion), the group velocity being then much smaller than
the corresponding phase velocity c/n(ωc). As a consequence
of the Kramers-Kronig relations, this occurs in particular when
the carrier frequency ωc of the light pulses is close to the
frequency ω0 of a well-marked maximum of the medium
transmission (minimum of absorption). When ωc = ω0, the
group velocity is minimal and a simple application of the
moment theorem shows that the center of gravity of the pulse
envelope then exactly propagates at the corresponding group
velocity whatever the pulse shape is [3]. It should be mentioned
that, due to the unavoidable distortion of a pulse propagating
in a dispersive absorptive medium, the location τmax of its
maximum generally differs from that τg of its center of gravity.
It has been, however, demonstrated that, under certain general
conditions, the transmitted pulse becomes nearly Gaussian
for large enough propagation distances, with obviously
τmax ≈ τg [4].
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An important issue for eventual applications of slow light
is the fractional delay τmax/τin, where τin is the full width at
half-maximum (FWHM) of the intensity profile of the incident
pulse. Large fractional delays (up to 25 with moderate pulse
attenuation) have been evidenced when the required peak in
the medium transmission is associated with the minimum
of absorption occurring halfway between two absorption
lines [5–7]. Most often, the transmission peak is obtained
by applying an extra coherent wave interacting nonlinearly
with the medium, exploiting, for instance, electromagnetically
induced transparency (EIT) in atomic vapors [8] or Brillouin-
induced gain in optical fibers [9]. Slow light becomes a
fashionable topic with the demonstration in an EIT experiment
of a group velocity as slow as 17 m/s in an ultracold atomic
gas [10]. Subsequently the experiments showing delays in the
transmission of light pulses were systematically analyzed in
terms of slow group velocity. Such an analysis, indisputable
for the EIT experiments, is, however, questionable in the cases
where the group velocity as given by Eq. (1) is not well
defined [11].

We specifically examine here the case of the transmission
of light pulses through saturable absorbers. As far back as
1965, Gires and Combaud [12] showed that the stationary
transmission of organic dyes is fairly well reproduced by
assimilating the medium to a resonant two-level medium and
using the rate equations approximation. By this means they
obtained two equations coupling the population difference
and the beam intensity. Solving these equations in the time-
dependent case, Selden theoretically studied the transmission
of light pulses, demonstrating narrowing, skewing, and time
delay of the transmitted pulse [13,14] in agreement with
the experimental observations [15–17]. From a qualitative
viewpoint, the delay is thus interpreted in terms of pulse
reshaping, the leading edge of the incident pulse being more
attenuated than its trailing edge. Insofar as only the intensity is
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involved in the process, the phenomenon is currently referred
to as incoherent bleaching to distinguish it from the pulse
delay and reshaping that occur in purely coherent cases.
Smith and Allen showed that delays sometimes attributed to
self-induced transparency (a coherent phenomenon) are in fact
the result of incoherent bleaching and are well reproduced
by Selden’s theory [18]. For a complete analysis of this
point, see [19]. Always by using the incoherent bleaching
model, Selden also examined the transmission of a continuous
wave (cw) whose intensity is slightly modulated by a sine
wave [20]. He showed that the intensity modulation index
increases with the propagation distance whereas its phase is
time delayed. These phenomena were observed on a ruby
crystal at room temperature by Hillmann et al. [21] and by
Bigelow et al. [22]. The latter, not taking into account the
results of the incoherent bleaching model and considering
the time delay of the modulation phase to be a group delay,
claimed to have discovered “a new method that produces
slow propagation of light” [22]. Their theoretical analysis
was based on an extrapolation of the results obtained when
two separated coherent waves originate coherent oscillations
of the populations at their frequency difference. Abundantly
cited, Ref. [22] paved the way to numerous articles invoking
slow light based on coherent population oscillations (CPO).
The systems under consideration are very various, comprising
in particular doped crystals [23–25], semiconductor devices
[26–30], doped optical fibers [31–34], and doped glass
microspheres [35]. However, as shown in [11,36–38], the
effects reported in most of these articles do not involve
coherence in the optical sense and can be explained in the
frame of the incoherent bleaching model. The controversy on
this matter restarted more recently with the publication of
an article reporting experiments performed with a spinning
ruby window [39]. In this article Wisniewski-Barker et al.
claim that their results are “incompatible with slow-light
models based on simple pulse reshaping arising from optical
bleaching.” This statement was contested by Kozlov et al.
[40] who performed an experiment validating the incoherent
bleaching model but, surprisingly enough, Wisniewski-Barker
et al. obtained the opposite result by using practically the
same experimental setup [41]. The controversy between the
two models thus remains open. We attempt in the following
to solve this issue. In Sec. II, we revisit the case of weak
modulation depths by extending the results given in [20,37]
and showing that, after correction, the CPO equations are
simply local expressions of the integral equations obtained
in the incoherent bleaching model. In Sec. III, we examine
the validity of the bleaching model in the case of saturating
pulses without background, we report experiments confirming
the positive result of Kozlov et al. and we give a possible
explanation of the different result reported in [41]. We finally
conclude in Sec. IV by summarizing and discussing our main
results.

II. CASE OF WEAK MODULATION DEPTHS

The CPO model traces back to the paper of Schwarz and
Tan who studied how the absorption of a coherent probe
wave by a saturable absorber is modified when the medium
is submitted to a coherent saturating wave [42]. They showed

that the probe absorption spectrum then displays a dip (hole)
centered at the pump frequency and of width ≈1/T1, where
T1 is the population relaxation time. This dip is considered in
[21] as resulting from the population oscillations created in the
medium by the beating of the pump and probe waves. When
the directions of propagation of the two waves are different,
it is possible to determine without ambiguity the absorption
coefficient, the refractive index, and the group velocity of
the probe wave. An experiment corresponding to this scheme
has been performed by Ku et al., the slow group velocity
being inferred from a measurement of the phase of the probe
field [26]. A related experiment involving counter-propagative
waves is reported in [34].

The problems arise when the previous results are extended
to the study of a single cw whose intensity is slightly modulated
by a sine wave of low frequency. Denoting � the modulation
frequency, the modulated wave can be considered as the
superimposition of three co-propagative cws, a saturating wave
of frequency ωs and two sidebands of frequency ωs ± �, acting
as probes [43]. Bigelow et al. consider in [22] that the two
probes act independently but, as soundly noted by Sargent,
“although neither probe frequency could influence the other
on its own, they succeed in doing so with the help of the
saturating wave” [44]. This indicates that Eq. (9) in [22] is not
correct. This error has been pointed out for the first time by
Mørk et al. [28] who indicated that a correct application of the
four-wave mixing theory leads to multiply the phase lag of the
modulation and thus the corresponding time delay by a factor
two.

Another point raised by Zapasskii and Kozlov [36] is that
the CPO model implicitly assumes that the saturating wave has
a spectral width much smaller than that of the hole induced in
the absorption spectrum (≈1/T1). This condition is far from
being met in most of the experiments. There is then no dip in
the optical absorption spectrum and thus no associated slow
light in the usual sense. In response to this objection, Piredda
and Boyd [45], while continuing to invoke CPO, developed
a model based on two equations coupling wave intensity
and ground-state population identical to those coupling wave
intensity and population difference in the incoherent bleaching
model [12,13,37]. They can be written in the simplified
form,

T1
∂N

∂t
= −N (1 + I ) + 1, (2)

∂I

∂z
= −αIN, (3)

where T1 is the ground-state recovery time, N is the ground-
state population normalized to its value at equilibrium, t

is the time retarded by the propagation time in the host
medium (negligible compared to the delays considered in the
following), I is the beam intensity normalized to the saturation
intensity, z is the abscissa along the direction of propagation,
and α is the unsaturated absorption coefficient. Equations (2)
and (3) implicitly assume that the ground state has no resolved
structure. This condition is met in saturable absorbers which
are dense media working at room temperature. It prevents
oscillations at the frequency of a transition between two
separated sublevels as evidenced in an alkali-metal vapor in
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buffer gas [46,47]. In the case of a cw, Eqs. (2) and (3) are
reduced to

N̄ (z) = 1

1 + Ī (z)
, (4)

∂Ī (z)

∂z
= − αĪ (z)

1 + Ī (z)
, (5)

Ī (z) + ln Ī (z) = Ī (0) + ln Ī (0) − αz, (6)

where, as in the following, upper bars refer to time-independent
quantities. When the cw is slightly modulated, I (z,t)=Ī (z) +
�I (z,t) with �I (z,t) � Ī (z) and N (z,t)=N̄(z) − �N (z,t)
with �N (z,t) � N̄ (z). Making a calculation at the first order
in �I and �N , taking into account Eqs. (4) and (6) and passing
in the Fourier space [48], we obtain the transfer functions
H (z,�) relating the Fourier transform �I (z,�) of �I (z,t) to
that �I (0,�) of �I (0,t) and H�N (z,�) relating the Fourier
transform �N (z,�) of �N (z,t) to �I (z,�). They read

H (z,�) =
(

Ī (z)

Ī (0)

)(
1 + Ī (0) + i�T1

1 + Ī (z) + i�T1

)

=
(

Ī (z)

Ī (0)

)(
1 + Ī (0) − Ī (z)

1 + Ī (z) + i�T1

)
. (7)

H�N (z,�) = 1

[1 + Ī (z)][1 + Ī (z) + i�T1]
. (8)

The transfer function H (z,�) has a single pole and a single
zero, both purely imaginary with a positive imaginary part.
This implies that its inverse Fourier transform, that is, the
system impulse response, is real and that the system is causal
with minimum phase shift [48]. The phase �(z,�) of H (z,�)
then obeys to the relation,

�(z,�) = −H{|ln (H (z,�))|}, (9)

whereH designates the Hilbert transform. Equation (9) may be
considered as a generalized Kramers-Kronig relation. Similar
properties hold for H�N (z,�). We incidentally remark that
H (z,�) is the transfer function of a simple electric network
involving an RC circuit, two voltage dividers, and a voltage
adder whereas an RC circuit and one voltage divider suffice to
reproduce H�N (z,�).

To relate Eq. (7) to the results given by Piredda and Boyd
in [45], we consider the transfer function H (dz,�) = H (z +
dz,�)/H (z,�) of the infinitely thin slice comprised between
z and z + dz in the medium. Taking into account Eq. (5), we
obtain

H (dz,�) = exp [−αmod(z,�)dz − iϕmod(z,�)dz], (10)

with

αmod(z,�) = α

1 + Ī (z)

{
1 − Ī (z)[1 + Ī (z)]

[1 + Ī (z)]2 + (�T1)2

}
, (11)

ϕmod(z,�) = αĪ (z)

1 + Ī (z)

{
�T1

[1 + Ī (z)]2 + (�T1)2

}
. (12)

In relation with Eq. (9), we note that ϕmod(z,�) =
H[αmod(z,�)]. When the modulation is reduced to a sine
wave of frequency � (as considered in most experiments),
αmod(z,�) is the attenuation coefficient of the modulation, and

ϕmod(z,�) is the associated phase lag per length unit. Equations
(11) and (12) are strictly equivalent to those obtained in [45]
by invoking the CPO model and this shows that the CPO
model does not bring new results with regard to the incoherent
bleaching model. As expected, the phase lag is two times that
given in [22,49]. A phase velocity vϕmod(z,�) = �/ϕmod(z,�)
can be associated with this phase lag. Depending on �, this
velocity should not be confused with a group velocity as it is
made in [22,45]. When the modulation consists in a pulse, the
modulation group delay dτgmod through the slice (z,z + dz)
is derived from H (dz,�) by the moment theorem. The slice
being assumed to be infinitely thin H (dz,0) ≈ 1 and dτgmod

can be identified to the coefficient of the first degree term in
the expansion of H (dz,�) in power series of (−i�). We get

dτgmod = αĪ (z)T1dz

[1 + Ī (z)]3
, (13)

and the corresponding (local) group velocity vgmod(z) =
dz/dτgmod reads

vgmod(z) = [1 + Ī (z)]3

αĪ (z)T1
. (14)

Note that this group velocity is related to the intensity
modulation transmission and should be distinguished from
the group velocity as defined by Eq. (1) for pulses of coherent
light.

The attenuation of the cw and of the modulation being in-
trinsically coupled, the widespread approximation consisting
in neglecting the former to study the latter is not justified.
The medium being assumed to occupy the space 0 � z � L,
the use of the integral expressions of Eqs. (7) and (8) has the
advantage to give directly �I (L,�) and �N (L,�) without
requiring integration in z. The corresponding expressions of
�I (L,t) and �N (L,t) read

ΔI (L,t) = F−1[H (L,�)ΔI (0,�)], (15)

ΔN(L,t) = F−1[HΔN (L,�)H (L,�)ΔI (0,�)], (16)

where F−1 designates inverse Fourier transforms. General
characteristics of �I (L,t) and �N (L,t) can be derived by
exploiting the remarkable properties of the cumulants [4,50].
The cumulants κn of the Fourier transform G(�) of a real
function g(t) are given by the expansion,

G(�) = G(0) exp

( ∞∑
n=1

κn

n!
(−i�)n

)
, (17)

where the cumulants κ1, κ2, and κ3 can be shown to be,
respectively, equal to the mean time of g(t), its variance σ 2, and
its third centered moment μ3. For G(�) = H (L,�), we get
κ1 = TL − T0, κ2 = T 2

L − T 2
0 , and κ3 = 2(T 3

L − T 3
0 ) where Tz

is a short-hand notation of T1/[1 + Ī (z)]. When the modulation
is pulsed, the additivity property of the cumulants enables us
to identify κ1 to the time delay of the pulse center-of-gravity
(modulation group delay), κ2 to the increase of the pulse
variance, and κ3 to that of μ3. The group delay for the whole
medium thus reads

τgmod(L) = T1

1 + Ī (L)
− T1

1 + Ī (0)
. (18)
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We incidentally remark that this result can be retrieved by
an integration combining Eqs. (13) and (5). An important
point is that the group delay cannot exceed T1 as large as
the medium thickness may be. This limit is attained when
Ī (0) � 1 (strongly saturating incident cw) and Ī (L) � 1
(medium nearly opaque). The variance and the third moment
of the transmitted pulse are then also the largest. If the incident
pulse is symmetric, the large positive value of κ3 entails that the
output pulse will be strongly skew with a rise much steeper than
its fall and, consequently, a time-delay τmax of its maximum
much shorter than the group delay τgmod. See, for illustration,
Fig. 2(c) in [37]. In the more realistic case where Ī (0) < 1
[always with Ī (L) � 1], the pulse distortion will be moderate
but the group delay will be short compared to T1 (while keeping
significantly longer than τmax). When the incident pulse is a
Gaussian of the form ΔI (0,t) ∝ exp (−t2/τ 2

p), the transmitted
pulse derived from Eq. (15) reads

ΔI (L,t) ∝ ΔI (0,t) + Ī (0)τp

√
π

2T1

×
[

1+erf

(
t

τp

− τp

2T1

)]
exp

(
τ 2
p

4T 2
1

− t

T1

)
,

(19)

where erf designates the error function. Figure 1 shows the
result obtained in the conditions of the experiment on ruby
reported in [25]. The parameters are Ī (0) = 0.23, T1 = 1.6 ms,
α = 1.17 cm−1, and L = 4.25 cm, from which we deduce
αL ≈ 5, Ī (L) ≈ 2 × 10−3, TL ≈ T1, and τgmod(L) ≈ 0.3 ms
(actually much shorter than T1).

The incident pulse (dotted line) has an FWHM duration
τin = 2τp

√
ln 2 = 5 ms. As predicted, τmax is significantly

shorter than τgmod (τmax ≈ τgmod/2). We also compare in Fig. 1
�N (z,L) to �I (z,L). It is easily deduced from Eq. (8) that
the group delay of �N (z,L) exceeds that of �I (z,L) by a
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FIG. 1. Normalized transmitted pulse �I (L,t) (solid line) and
population variation �N (L,t) (dashed line). Parameters are as fol-
lows: Ī (0) = 0.23, T1 = 1.6 ms, α = 1.17 cm−1, and L = 4.25 cm,
leading to αL ≈ 5, Ī (L) ≈ 2 × 10−3, TL ≈ T1, �τg(L) ≈ T1, and
τgmod(L) ≈ 0.3 ms. The normalized incident pulse �I (0,t) (dotted
line) of FWHM duration τin = 5 ms is given for reference. Note the
large delay of �N (L,t) compared to that of �I (L,t).
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FIG. 2. Fractional delay τmax/τin of the transmitted pulse (dashed
line, left scale) and ratio τmax/τgmod (solid line, right scale) as functions
of the duration τin of the incident pulse. Other parameters as in Fig. 1.

quantity,

Δτg�N = T1

1 + Ī (L)
≈ T1. (20)

An important point is that this extra delay of the population
evolution is much longer than the delay of the signal �I (z,L).

Coming back to the latter, Fig. 2 shows how the fractional
delay τmax/τin of the transmitted pulse and the ratio τmax/τgmod

depend on the duration τin of the incident pulse. It appears that
τmax approaches its asymptotic value τgmod for values of τin at
which the fractional delay tends to 0 and, conversely, that the
latter attains its maximum for a pulse duration τin such that is
only about τgmod/3.

III. CASE OF INTENSE PULSES WITHOUT
BACKGROUND

Even duly rectified, the CPO model, based on linearized
equations, does not apply to the case of saturating pulses
without background. In order to extend its range of application
to such situations, its defenders invoke a mechanism of
“self-pumping,” one part of the pulse acting as a pump whereas
the remaining part acts as the probe [22,41]. Without any
quantitative support, this claim seems purely incantatory. It
is even qualitatively incompatible with the fact that smooth
symmetric pulses are broadened and gain a positive skewness
(rise steeper than the fall) when they are superimposed on a
large background (range of validity of the CPO model) whereas
saturating pulses without background are narrowed and gain a
negative skewness (fall steeper than the rise) [13,15,37]. Re-
porting experiments performed with a spinning ruby window,
Wisniewski-Barker et al. [39] recently proclaimed the failure
of the incoherent bleaching model for this reference material.
According to the demonstration made in the previous section
of the equivalence of the two models, all the results obtained
by means of the CPO model in the weak modulation limit
would then require revision. Fortunately enough, it is nothing
of the sort. The argument given in [39] against the incoherent
bleaching model is that, in this model, the transmitted light
intensity should vanish when the incident light intensity is
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FIG. 3. Experimental setup. LASER, single longitudinal mode
Nd:YVO4 laser (Verdi V6, Coherent) delivering a cw at 532 nm;
HWP, half-wave plate; AOM, acousto-optic modulator (AA Opto-
Electronic, MTS110-A-VIS); BT, beam trap absorbing the non-
diffracted light; RCR, ruby crystal rod; SPF, dichroic shortpass
filter (Semrock, BSP-633R-25) eliminating the ruby fluorescence
light at 694 nm; DET, high-speed silicon photodetector (Thorlabs
DET 210, DC-350 MHz); AMP, low-band (DC-200 kHz) amplifier
(Hamamatsu C7319); OSC, digital oscilloscope (Lecroy Waverunner
104 MXi); AOM DRIVER, function generator driving the acousto-
optic modulator and triggering the oscilloscope.

null, a condition that would be not verified in the experiments.
In a comment, Kozlov et al. [40] contested the achievement
of strictly null incident intensity in these experiments and
proposed a more drastic test where the incident beam is
switched on-off by a mechanical chopper (100% square
wave modulation). Performing this experiment, they obtained
results validating the incoherent bleaching model, without
the slightest transmitted intensity after the switching off of
the incident beam. This, however, did not close the debate.
Indeed, accepting the challenge proposed by Kozlov et al.,
Wisniewski-Barker et al. [41] performed a nearly identical
experiment. They obtained opposite results, evidencing in
particular an exponential decrease of the transmitted intensity
after the switching off of the incident beam. Note that they did
not attempt to explain the discrepancy between their results
and those of Kozlov et al. To solve this issue, we describe
in the following an experiment that validates the incoherent
bleaching model and theoretically determine in this model the
time dependence of I (L,t) and of N (L,t), providing a possible
explanation of the experimental results obtained in [41].

Figure 3 shows our experimental setup. It is very similar
to those used in [40,41]. We use a single longitudinal mode
Nd:YVO4 laser (Verdi V6, Coherent) operating at 532 nm
as a cw source of controllable power. The laser beam is
collimated and sent on an acousto-optic modulator (AA
Opto-Electronic, MTS110-A-VIS). The light polarization at
the input of the modulator is adjusted by a half-wave plate.
A sine wave, at a 110-MHz acoustic frequency, is applied to
the modulator crystal. Its amplitude is driven by a function
generator which enables us to switch the power diffracted
in the first order from 0% to 80% of the power delivered
by the laser. The switching times are about 1 μs. A lens
of 50-mm focal length focuses the diffracted beam slightly
behind the front face of a 120-mm long standard laser ruby
crystal rod. The transmitted beam is focused onto a high-speed
silicon photodetector (Thorlabs DET 210, DC-350 MHz). The
detector is preceded by a dichroic shortpass filter (Semrock,
BSP-633R-25) of optical density exceeding 7 at 694 nm, which
eliminates the fluorescence light emitted by the ruby crystal.
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FIG. 4. Example of transmitted signal observed in our experi-
ments for a power sent on the ruby crystal of about 1.6 W and a pulse
duration τin = 25 ms (solid line). The dashed line is the profile of
the incident pulse obtained by replacing the ruby crystal by a suitable
neutral density filter. The insets are enlargements of the pulse rise and
fall.

The signal delivered by the detector is amplified by a low-band
(DC-200 kHz) amplifier (Hamamatsu C7319) and averaged by
a digital oscilloscope (Lecroy Waverunner 104 MXi). We have
carefully verified that the power diffracted in the first order is
null when the modulator is in the off position (amplitude of
the acoustic wave equal to zero) and that the corresponding
signal delivered by the low-band amplifier vanishes. Numerous
experiments have been performed for various laser powers and
for several positions of the minimum beam waist inside the
ruby crystal. In all these experiments, we never observe any
detected signal when the power is switched off.

Figure 4 gives an example of detected signal obtained in
such conditions. The power applied on the front face of the ruby
crystal is modulated from 0 to 1.6 W by a 20-Hz square wave.
The leading edge of the signal is characterized by an almost
instantaneous jump which brings the signal to a value equal to
75% of its maximum value. This rapid variation is followed
by a nearly exponential slow increase with a time constant
of about 1.6 ms. In accordance with the incoherent bleaching
model, on its trailing edge the signal quickly returns to zero
with a 90%–10% switching time <6 μs mainly introduced
by the amplifier. Note that, for completeness, we have also
performed experiments where the acousto-optic modulator
was replaced by a mechanical chopper as in [40,41]. The
results obtained with both modulators are identical. Finally,
although this parameter is not critical, we have measured the
unsaturated optical thickness of the ruby crystal by collimating
the beam inside the rod. The linear evolution of the transmitted
power versus the input one leads to a mean value of αL

close to 9.
To analyze the transmitted signals obtained in our ex-

periments as those reported in [40,41], we come back to
Eqs. (2) and (3) which may be considered as the basis of the
incoherent bleaching model. They first show that I (L,t) = 0
when I (0,t) = 0. Analytical results valid at every time can be
obtained when the medium thickness is such that I (L,t) �
I (0,t), a condition met in the experiments. As in [13,37], we
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FIG. 5. Theoretical transmitted intensity as a function of time
for an incident square pulse. Parameters are as follows: T1 = 1.6 μs,
αL = 9, τin = 12 ms, and, from top to bottom, I0 = 0.1, 0.23, 0.5, 1,
and 2. The solid and dashed lines are, respectively, the exact numerical
solution and the approximate analytic solution given by Eq. (24).

introduce the function,

Z(L,t) = ln [I (L,t)] − ln [I (0,t)] + αL. (21)

From Eq. (2,3), we deduce

T1
dZ

dt
+ Z = I (0,t) − I (L,t) ≈ I (0,t), (22)

and

I (L,t) ≈ I (0,t) exp [Z(L,t) − αL]. (23)

In the case of a square incident pulse of the form I (0.t) =
I0[uH (t) − uH (t − τin)] where uH (t) designates the Heaviside
unit step function and τin is the pulse duration, we get

I (L,t) ≈ I (0,t) e−αL exp[I0(1 − e−t/T1 )]. (24)

The transmitted pulse displays an initial discontinuity equal
to I (0,t) e−αL at t = 0 before rising as an exponential of
exponential and falling to 0 at t = τin. If τin � T1, it attains
the asymptotic limit I0 exp (I0 − αL) before falling. Note also
that the rise is reduced to a simple exponential if I0 � 1. We
have then

I (L,t) ≈ I (0,t) e−αL[1 + I0(1 − e−t/T1 )]. (25)

Figure 5 shows the results obtained for T1 = 1.6 μs, αL =
9, τin = 12 ms, and, from top to bottom, I0 = 0.1, 0.23, 0.5, 1,
and 2. Note that the analytical solution given by Eq. (24)
perfectly fits the exact numerical solution as long as I0 �
αL and that the shape of the transmitted pulse then does
not depend on αL. The values I0 = 0.23 and T1 = 1.6 μs
approximately correspond to the experiment of Fig. 4 and
Eq. (25) satisfactorily holds in this case.

In order to determine the normalized population NF ≈
1 − N of the fluorescent metastable level (again in the limit
I0 � αL ), we come back to Eq. (22) and replace I (L,t)
by its approximate form given by Eq. (24). After a tedious
calculation, we get for the rise of NF (L,t) the rather complex
expression,

NF (L,t) = I0e
−αLf (t) e−t/T1uH (t), (26)
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FIG. 6. Theoretical evolution of the fluorescent metastable level
population. Pulse duration τin = 15 ms. Other parameters as in Fig. 5.
The solid and dashed lines are, respectively, the exact numerical
solution and the analytic solution given by Eqs. (26)–(28). (Inset)
Comparison for I0 = 0.5 of the exact numerical solution (solid line)
to that given by Eqs. (28) and (29) analogous to those of an RC circuit
(dashed line).

with

f (t) = exp

[
t

T1
+ I0(1 − e−t/T1 )

]

+ I0e
I0 [E1(I0) − E1(I0e

−t/T1 )] − 1, (27)

where E1(x) designates the exponential integral function [51].
Equations (26) and (27) hold for arbitrary I0 � αL. For
t > τin, it immediately results from Eq. (3) that, without any
restriction on I0 and αL, NF (L,t) is reduced to a decreasing
exponential of time constant T1, namely

NF (L,t) = NF (L,τin) exp

(
− t − τin

T1

)
uH (t − τin). (28)

Figure 6 shows the evolution of the population of the
fluorescent metastable level obtained for the intensities already
considered in Fig. 5. We see that Eqs. (26)–(28) perfectly fit
the exact numerical solutions. When I0 � 1, Eq. (26) becomes
at the lowest order in I0,

NF (L,t) = I0e
I0−αL[1 − e−t/T1 ]uH (t). (29)

Equations (29) and (28) are identical to those describing,
respectively, the charge and the discharge of a capacity C

through a resistance R with RC = T1. As shown in the inset
of Fig. 6, they provide a satisfactory approximation of the
exact result for I0 as large as 0.5.

Our experimental results on the transmitted pulse I (L,t)
obtained for an incident square pulse confirms those obtained
by Kozlov et al. [40] and are in good agreement with our
calculations based on the incoherent bleaching model. The
key points are (i) I (L,t) presents a discontinuity followed by
an exponential-like rise when the incident beam is switched
on (ii) I (L,t) immediately falls to 0 when the incident
beam is switched off. Quite different results are reported
by Wisniewski et al. [41]: There is no initial discontinuity
of I (L,t) and I (L,t) falls down exponentially with a time
constant of about T1 when the incident beam is switched off.
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In these experiments, the signal hardly exceeds the dark signal
of the detector and the signal-to-noise ratio is poor compared
to that obtained by Kozlov et al. and in our experiments.
The shape of the observed signals strangely resembles that of
the evolution of the fluorescent metastable level population
NF obtained in the incoherent bleaching model (Fig. 6).
It thus seems that the light actually observed in [41] is
nothing but fluorescence light. The fact that “the delays of
the individual Fourier components [of the observed signal] are
independent of the modulation frequency” as noted in [41]
simply reflects that, for moderate saturations, the population
NF (L,t) practically evolves as the voltage in an RC circuit [see
inset of Fig. 6 and Eqs. (28) and (29)]. Wisniewski et al. add
“the shape of the tail should be independent of the modulation
frequency of the pulse.” Equation (28) shows that it is actually
the case for NF (L,t) whatever the saturation is. Otherwise
said, all the experimental results reported in [41] are quite
compatible with the incoherent bleaching model insofar as the
observed light seems to be fluorescence light and not the light
transmitted at the laser frequency.

IV. SUMMARY AND DISCUSSION

Our article confirms the validity of the bleaching model to
analyze the slow transmission of light pulses through saturable
absorbers. Most experiments of so-called “Slow light based
on (by means of, via) coherent population oscillations” are
fully explained by the incoherent bleaching model. The very
expression of coherent population oscillations is misleading.
Indeed coherence in the optical sense generally plays no role
in these experiments and the population oscillations at the low
frequency of the intensity modulation are a trivial consequence
of the equations coupling intensity and populations in saturable
absorbers [12–14,20,37,45]. The population change being
delayed with respect to the modulation (Fig. 1), the attribution
of the origin of the slow transmission of the modulation to the
population oscillations is questionable. We finally remark that
the concept of group velocity as defined for pulses of coherent
light does not apply to the broadband light considered in most
experiments. It is, however, possible to define a group delay for
the modulation [Eq. (18)] and even to establish a generalized
Kramers-Kronig relation between its phase and its amplitude
[Eq. (9)]. Note that these results are consistent with the CPO
model as revised in [45] and that the equations obtained in
the latter are only local expressions of the integral equations
derived in the incoherent bleaching model. An important
point is that the modulation group delay has an upper limit
equal to the medium response time T1 no matter the medium
thickness and is often much shorter. See Figs. 1 and 2. This
situation contrasts with that encountered in “pure” slow light

experiments performed with coherent light where the time
delays do not suffer such limitations [52]. As soundly remarked
in [38], it thus appears that the slow transmission in saturable
absorbers reflects “slow response” of the medium rather than,
strictly speaking, “slow light.”

The above analysis essentially concerns the transmission
of light pulses superimposed on a large background. For
saturating pulses without background, the range of validity of
the CPO model, based on linearized equations, is artificially
extended in [22,41] by invoking a mechanism of self-pumping,
one part of the pulse acting as a pump and the remaining part
as a probe. Without any theoretical justification, this model
gives pulse shapes that are qualitatively inconsistent with
those derived in the incoherent bleaching model [13,14,37] and
actually observed for organic dyes [15,16]. The recent claim
of the failure of the incoherent bleaching model to explain the
pulse shapes observed in the reference case of ruby at room
temperature [39] originates two complementary experiments
with this material [40,41]. Incident square wave pulses were
used in these experiments, the main point being that, in the
bleaching model, the transmitted light should immediately
vanish at the instant where the incident light is switched
off. The experiments were performed with similar setups but,
surprisingly enough, gave opposite results. The first one [40]
validates the bleaching model whereas the following one [41]
shows an exponential-like fall of the transmitted pulse when
the incident light is switched off. No explanation was given in
[41] of this discrepancy. Our experiments and our theoretical
calculations of the transmitted pulse shape and of the ruby
fluorescent metastable state population bring some light on
the problem. Our experimental result (Fig. 4) not only shows
that the observed signal falls to 0 at the end of the square
but that its rise is also in agreement with that predicted by
the bleaching model (Fig. 5). The apparently opposite result
obtained in [41] can be explained by examining the theoretical
evolution of the population of the fluorescent state (Fig. 6) that
strangely resembles the observed signal in [41]. We believe
that the latter is caused by the fluorescence and the incoherent
bleaching model is thus entirely validated.
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