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The fact that nonlinear systems with several modes exhibit 
recurrence to the initial state after complex coupling 
dynamics, instead of equipartition, is known as the Fermi–

Pasta–Ulam (FPU) paradox1,2. The controversial nature of such 
phenomena has stimulated several decades of prolific investi-
gations. The final emerging picture is that the equipartition is 
eventually reached, though over extremely long times, whereas 
recurrences dominate the behaviour over shorter timescales3. 
In dispersive and nonlinear systems that represent the continu-
ous limit of the oscillator chains originally considered by FPU, 
a similar behaviour is envisaged. In particular, in optical fibres 
where the propagation is ruled by the nonlinear Schrödinger 
equation (NLSE), FPU recurrence is triggered by the universal 
phenomenon of modulational instability, that is, the exponen-
tial growth of a modulation at the expense of a strong pump4,5. 
Modulational instability induces a seeded modulation frequency 
to be amplified along with its harmonics via multi-wave mixing 
to form a comb with a spectral triangular shape, until the process 
is reversed leading to FPU recurrence6. To date, in single-pass 
optical experiments, observations have been limited to the first 
recurrence cycle7–9, whereas the long-term dynamics is conjec-
tured to lead to a thermalized state owing to the role played by 
amplified noise10.

The investigation of such phenomena are attracting tremen-
dous interest in optics11–26, boosted by their strong link with the 
formation of deterministic breathers23, statistics of rogue waves25,26, 
supercontinuum generation24, turbulence11,15 and frequency combs 
in microresonators13. Yet, in this context, the essential fact that 
nonlinear modulational instability does not involve a simple recur-
rence, but rather a complicated phase-space structure27–32 asso-
ciated with spontaneous symmetry breaking33, has never been 
observed. The signature of such a structure is the occurrence of 
two types of qualitatively different recurrences that are accessible 
under the same operating conditions. Observation of this phenom-
enon, however, has been elusive so far due to fundamental limi-
tations in the experiments. The major limitation is losses, which 

prevent the observation of both types of recurrence, as recently 
shown in water-wave experiments34 (which are also affected by 
higher-order effects35). An additional limitation, in fibre optics, 
comes from the need to measure the longitudinal variation of the 
phases of the mixing products, which turns out to be extremely 
challenging. In this study, we overcome both these limitations in 
a fibre experiment by introducing (1) a loss compensation scheme 
and (2) a novel measurement technique that allows the powers and 
relevant phases along the fibre to be mapped. As a result, we clearly 
observe the signature of the spontaneously broken symmetry of 
FPU recurrence.

Phase-space structure of recurrent modulational instability
The modulational instability and its recurrent FPU stage are 
described by the NLSE that rules the propagation of the electric 
field envelope E(Z,T) in the anomalous dispersion regime of an  
optical fibre:

β
γ∂

∂
− ∂

∂
+ ∣ ∣ =i E

Z
E

T
E E

2
0 (1)2

2

2
2

where γ is the nonlinear coefficient, β2 is the negative (anomalous) 
group-velocity dispersion, Z is the distance and T is the retarded 
time. According to equation (1), modulational instability involves 
the growth with exponential gain g(ω) (see Fig. 1a) of a modula-
tion with frequency fm (sideband pair with frequency detuning ±​fm)  
at the expense of a continuous wave pump with power P, provided 
that the normalized frequency ω π β γ= ∣ ∣∕f P2 m 2  is such that 
ω ≤​ 2. When such instability is seeded, FPU cycles of amplifica-
tion and back-conversion occur7–9,27–32. To understand the richness 
and complexity of the recurrence, the key point is that the onset 
of modulational instability implies a spontaneous symmetry break-
ing, as sketched in Fig. 1a. Indeed the mixing process is equiva-
lent to the motion of an ideal particle in the potential sketched in 
Fig. 1a, where the equilibrium point at the origin corresponds to 
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the pump wave. Decreasing ω across the onset of modulational  
instability induces the potential to undergo a spontaneous sym-
metry-breaking transition from a single well (with the minimum 
representing the stable pump for ω >​ 2) to a double well for ω <​ 2, 
where the pump exchanges its stability with two new minima. The 
simplest formalization of this concept, which allows the prominent 
role of the phases in the dynamics to be emphasized, is the trunca-
tion to three-wave mixing (3WM)31,36, according to which the mix-
ing can be described in terms of a one-dimensional oscillator by a 
Hamiltonian (see Methods; for a discussion of other approaches see 
also Supplementary Information):

η η Δϕ ω η η= − + − ∕ − ∕H (1 )cos(2 ) (1 2) 3 4 (2)1 1
2

1 1
2

where η1 is the power fraction of the first-order (n =​ 1) sidebands 
and Δ​ϕ =​ ϕ0 −​ ϕ1 is the only effective phase, ϕ0 and ϕ1 being the 
pump and sideband phase, respectively. The level curves of H, 
shown in Fig. 1b in the plane (x,y) ≡​ (η1cosΔ​ϕ, η1sinΔ​ϕ), clearly 

show the double-loop structure characteristic of the motion in a 
double-well potential in x. The centres or stable points C0 and Cπ 
correspond to the minima of the potential and are the 3WM rep-
resentation of invariant modulated waves with equal modulation 
depth and opposite sideband phase Δ​ϕ =​ 0 or Δ​ϕ =​ π​ (relative to 
the pump). In the time domain, they stand for identical wave-
trains except for a temporal shift of half period π​/ω due to such 
shift. A separatrix or homoclinic loop (dashed green curve in  
Fig. 1b) divides the possible trajectories into: (1) inner orbits 
(thick orange curve in Fig. 1b, corresponding to evolutions in a 
single well) surrounding only one stable centre, either C0 or Cπ, 
thus experiencing phase variations bounded in one (right or left) 
semiplane; and (2) outer orbits or double-well evolutions (thick 
blue curve in Fig. 1b), surrounding both stable centres and hence 
featuring unconstrained phase variations in the whole range [0,2π​].  
In particular, in this case, maximum depletion is obtained by 
alternation between Δ​ϕ =​ 0 and Δ​ϕ =​ π​, corresponding to tempo-
ral wavetrains mutually shifted by half period.
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Fig. 1 | Spontaneous symmetry-breaking of modulational instability and FPU. a, Modulational instability (MI) gain versus ω and sketch of the equivalent 
potential associated with the mixing process, exhibiting spontaneous symmetry breaking (change from single to double well) when going across the onset 
of modulational instability at ω =​ 2. b, Phase-plane evolutions in the plane (x,y) ≡​ (η1cosΔ​ϕ, η1sinΔ​ϕ), as obtained from the simple oscillator (Hamiltonian 
in equation (2), where ω =​ 1.25 as in the experiment) describing the interaction of the pump and first-order sidebands, as can be seen from the schematic 
of the comb; the separatrix (dashed green line) and the inner and outer orbits (thick orange and blue solid lines, respectively) correspond to motions 
characterized by the total energy levels reported with the same colour in a. c–e, Projections of NLSE trajectories (open dots) on the 3WM phase plane (x,y) 
for weak initial modulation with different initial phases: Δ​ϕ0 =​ 0 (c), Δ​ϕ0 =​ π​/2 (d) and Δ​ϕ0 =​ −​0.285π​ (e). f–h, Corresponding full temporal evolutions 
obtained from the NLSE showing in-phase (f) and out-of-phase (staggered; g) recurrences, and the separatrix or Akhmediev breather (h). The distance 
and time are in units nonlinear length Znl =​ (γP)−1 and characteristic time β= ∣ ∣T Z0 2 nl, respectively.
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We are interested in the so-called homoclinic crossing phenom-
enon27–32, that is, switching between type (1) and type (2) orbits 
controlled by the launching conditions. For a weakly modulated 
pump, this occurs in the whole range of unstable frequencies, by 
changing the input phase Δ​ϕ0 =​ Δ​ϕ (z =​ 0) from amplitude modula-
tion Δ​ϕ0 =​ 0 to frequency modulation Δ​ϕ0 =​ π​/2 (other conditions 
for switching become frequency dependent and are discussed in 
the Supplementary Information). We show this by means of direct 
numerical integration of the NLSE. Figure 1c–e shows the projec-
tions of the NLSE evolutions on the 3WM phase plane for Δ​ϕ0 =​ 0, 
Δ​ϕ0 =​ π​/2 and Δ​ϕ0 =​ −​0.285π​ (separatrix), respectively. Apart from 
slight quantitative deviations (due to the neglected higher-order 
sidebands), the orbits present exactly the same qualitative features 
expected from 3WM. The corresponding spatio-temporal evolu-
tions presented in Fig. 1f–h show that homoclinic crossing implies, 
as expected, switching from the unshifted recurrences shown in Fig. 
1f to the staggered patterns shown in Fig. 1g induced by the shift  
Δ​ϕ =​ π​, periodically acquired only by the double-loop orbits. 
Finally, the separatrix in Fig. 1h represents the well-known exact 
solution of the NLSE known as the Akhmediev breather23,24,26,27,31.

To further show that the qualitatively different FPU recurrences 
associated with the homoclinic crossing can be detected in an optical 
fibre, in Fig. 2, we show further simulations based on the full NLSE 
with realistic real-world values. We find that, for a very weak input 
modulation (pump to sideband power ratio of 20 dB, or η1 =​ 0.98), 
nearly 18 km of optical fibre are necessary to see two recurrences 
with Δ​ϕ0 =​ 0, as shown in Fig. 2a–d, whereas with Δ​ϕ0 =​ π​/2 only 

one full recurrence is completed over the same length. Indeed, while 
in both cases two cycles of conversion and back-conversion are 
achieved in terms of powers (see full spectra in Fig. 2c,g or power 
fractions in Fig. 2a,e), when Δ​ϕ0 =​ π​/2, the phase, which spans the 
whole range [0,2π​], recurs only over a double distance. Indeed, in 
the latter case, the initial condition in the phase plane is recovered 
only after moving through the double loop shown in Fig. 2h, which 
requires nearly twice the distance needed to move through a single 
loop as in Fig. 2d. Interestingly, in both cases, the weakness of the 
input modulation induces the conversion process, which is very 
rapid around the maximum extension of the comb, to strongly slow 
down near the recurrences (see the plateau in power in Fig. 2a,e) 
when the point passes, in the phase plane, close to the saddle point 
(that is, the unstable pump). This is similar to the behaviour of a 
pendulum37 or any other nonlinear oscillator with an unstable state.

Experimental characterization of the evolutions
To have an almost real-time access to the ongoing dynamics along 
the fibre, we have developed a multi-channel vector optical-time-
domain reflectometer. It is optimized for nonlinear measurements. 
Indeed, Rayleigh backscattered light excited from a coherent light 
source exhibits a jagged appearance due to the fading phenomenon. 
The latter originates from the random state of polarization of the 
scattered light and from a speckle-like phenomenon due to the huge 
number of scattered waves involved in the process38. To overcome 
this strong limitation, we perform an error correction calibration 
using a double pulse sequence. A strong signal pulse is first launched 
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Fig. 2 | Homoclinic crossing and period doubling in fibre FPU recurrence. a–c,e–g, Evolutions along fibre distance of pump and sideband powers (a,e), 
effective phase Δ​ϕ(Z) (b,f) and full modulational instability power spectrum (c,g). d,h, Phase-plane portrait of the evolution. Upper panels (a–d) and 
lower panels (e–h) differ only in the input relative phase, set to Δ​ϕ0 =​ 0 (amplitude modulation) and Δ​ϕ0 =​ π​/2 (frequency modulation), respectively. Fibre 
parameters: β2 =​ −​19 ps2 km−1, γ =​ 1.3 (W km)−1, modulation frequency fm =​ 35 GHz, pump power P =​ 450 mW, pump to signal input power ratio is equal to 
20 dB. All power plots are normalized to their respective maxima.
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inside the experiment fibre (SMF28) and a weak reference pulse, 
typically attenuated by 13 dB, shortly follows. We assume that the 
weak pulse and its backscattered light experiences similar linear 
effects compared to the strong one, but negligible nonlinear effects. 
We then correct the amplitude and phase of each strong backscat-
tered wave by means of those of the weak one. Figure 3 shows a 
simplified overview of the experimental setup (see Supplementary 
Information for a more thorough discussion and description). After 
the pulse modulation stage, the incoming light is phase modulated at 
fm =​ 35 GHz to generate two phase-locked symmetric sidebands that 
initiate the FPU process. Owing to a commercial waveshaper, we 
have full arbitrary control of the relative phase and intensity of these 
sidebands with respect to the carrier, that is, the pump. In addition, 
along the fibre, a counter-propagating Raman pump (1,480 nm) 
accurately compensates for the linear losses of the SMF28. On 
the detection side, the Rayleigh backscattered light is mixed with 
a local oscillator. To perform a coherent heterodyne detection, the 
local oscillator is phased locked and detuned by Δ​F =​ 800 MHz with 
respect to the pump frequency. To provide a local oscillator to each 
optical component of interest, the local oscillator is also modu-
lated at fm =​ 35 GHz. The analysis is restricted to the evolution of 
the pump and the signal (first-order sideband pair) as they contain 
all the information needed to characterize the whole dynamics of 
our system (see Methods). The time of flight of their beat note with 
the modulated local oscillator is isolated with an optical filter, and 
logged with a real-time oscilloscope for further demodulation pro-
cessing. Finally, a spatial resolution of about 20 m is achieved.

Discussion
In the experiment, the modulation frequency is set to fm =​ 35 GHz, 
that is, slightly below the peak modulational instability gain (non-
linear phase matching) frequency at 40 GHz, and such that all the 
harmonics nfm n =​ 2, 3, …​ are stable, thereby experiencing synchro-
nous growth and decay with the main injected pair20. The input 
spectrum in the SMF28 (see Fig. 4a) clearly shows the three main 
input frequencies, along with very weak (<​−​25 dB) harmonics due 
to residual four-wave mixing in the fibres used to carry the signal 
to the main SMF28 fibre. Figure 4b shows the output triangular 
spectrum under maximal temporal compression. Using our setup, 

we have recorded experimentally the longitudinal evolutions of the 
powers of the pump and of the first-order sideband and their rela-
tive phase for two different initial pump-signal relative phase values 
(Δ​ϕ0 =​ 0 and Δ​ϕ0 =​ π​/2). All the evolutions are shown in Fig. 4c−​h 
with solid rainbow lines. Ideally, one should use a very weak modu-
lation at the input. However, this results in a large conversion and 
large recurrence distances, which in turn makes the compensation 
scheme more demanding due to the increased losses and enhances 
the impact of noise amplification due to spontaneous modulational 
instability, which is ultimately responsible for thermalization10. In 
our experiment, the trade-off between a weak modulation and rea-
sonable fibre length led us to operate with a pump to sideband power 
ratio of 8.5 dB (compared with 20 dB in the ideal case of Fig. 2), which 
allowed for scaling down two recurrence periods below the length 
of 7.7 km of our fibre. It is noteworthy that such a stronger modu-
lation results in a less pronounced plateau in power (see Fig. 4c,f, 
and compare with Fig. 4a,e), due to passages at larger distances from 
the saddle point (that is, the pump) in the phase plane. Interestingly 
enough, by comparing Fig. 4c and Fig. 4d, we notice a nearly perfect 
recurrence in terms of power levels for Δ​ϕ0 =​ π​/2, whereas the recur-
rence is within 20% for Δ​ϕ0 =​ 0, desspite the same level of Raman 
pump to compensate for the losses. We mainly attribute this to the 
fact that, in the presence of strong two sidebands modulation, the 
trajectories followed by the injected amplitude modulation (Δ​ϕ0 =​ 0) 
show a stronger deviation against the ideal case of weak modulation 
(Fig. 4), compared with the case of the injected frequency modu-
lation (Δ​ϕ0 =​ π​/2). This is indeed evident also from the simulated 
trajectories (black curves) in Fig. 4c,f, which highlight the non-ideal 
behaviour that is also manifest from a slight spatial shift between the 
dip of the pump and the peak of the sidebands as well as a certain 
degree of asymmetry between the first cycle and the second, which 
also reflects in the non-perfect superposition of the trajectories in 
the phase plane (compare Figs. 2d and 4e).

Nonetheless, we emphasize that the measured data clearly high-
light the two qualitatively different types of recurrences. Indeed 
the range of variation of the phase is bounded between ±​1 rad for  
Δ​ϕ0 =​ 0 (see Fig. 4d), whereas for Δ​ϕ0 =​ π​/2 the phase turns out to 
span nearly the whole range of 2π​ over a single recurrence (see Fig. 4g).  
The evidence for the impact of the relative initial phase is even 
more clear by reconstructing the phase-portrait evolutions. For  
Δ​ϕ0 =​ 0, as shown in Fig. 4e, the evolution exhibits more than two 
quasi-periodic orbits spanning only half of the phase plane, as pre-
dicted in the ideal scenario (Fig. 2a–d). Conversely, for Δ​ϕ0 =​ π​/2, 
the phase-plane evolution in Fig. 4h spans the whole phase plane 
making two loops that are nearly symmetric around the vertical 
axis. All the results are confirmed by numerical simulations of the 
NLSE (equation (1)), with good agreement (solid black lines). We 
have also performed additional measurements corresponding to 
initial conditions located on the other cardinal points of the phase 
plane, that is, Δ​ϕ0 =​ π​, 3π​/2, which show good agreement with the 
expected dynamics. Indeed, we found that symmetric initial condi-
tions in the phase plane, Δ​ϕ0 =​ ±​π​/2 and Δ​ϕ0 =​ 0, π​, respectively, 
give almost symmetric orbits in the phase plane (see Supplementary 
Information). Importantly, we have also provided further evi-
dence for homoclinic crossing by performing additional measure-
ments obtained by varying the phase across the critical value fixed 
by the slope of the separatrix near the origin (see Supplementary 
Information). These measurements become increasingly difficult 
because the period of the recurrence tends to diverge when such a 
critical value is approached.

Conclusions
We believe that our experimental technique opens new perspectives 
in the characterization of parametric mixing processes in guided 
wave optics, including the regime of phase-sensitive amplification. 
Our results pave the way towards a more complete understanding 
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of the extremely rich and formidably complex phenomenon of FPU 
recurrence. In this respect, it must be noted that most of the recent 
progress towards understanding the recurrence and its deteriora-
tion have a theoretical nature (see, for example, refs 3,10,11 and refer-
ences therein). However, few experimental tests exist that deepen 
the mechanisms of mode interaction and the recurrence in a truly 
conservative (Hamiltonian) setting, as originally proposed by FPU. 
Our results establish optical fibres to be a viable platform for inves-
tigating all aspects of mode interactions, including the role of the 
mutual phases, at the same time highlighting for the role of spon-
taneous symmetry breaking and the existence of a complex homo-
clinic structure in FPU dynamics ruled by modulational instability. 
This opens the doors to further experimental investigations that 
range from the mechanisms of thermalization and their universal-
ity10,11, the observation of higher-order separatrices, their associated 
phase-plane dynamics and their role in rogue-wave formation25 
and supercontinuum generation, the link with new mechanisms of 
soliton-mediated recurrences in fibres39, to the transition to chaos 

induced around the homoclinic structure (homoclinic chaos) in 
strongly perturbed structures such as fibre passive cavities and 
microresonators for frequency comb generation13, where modula-
tional instability remains a key driving mechanism.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41566-018-0136-1.
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spectrum analyser by slightly decreasing the sideband amplitude to shift the maximal compression point at the fibre output (b). c,d,f,g, Evolution along 
the fibre length of the pump power (dashed lines) and the first sideband pair power (dotted lines; c,f) and the relative phase Δ​ϕ(z) (d,g). e,h, Projections 
of the evolutions in the 3WM phase plane (the insets show the corresponding evolutions obtained numerically from the NLSE). Numerical simulations are 
depicted in black lines and experiments in solid rainbow lines. c–e and f–h differ only in the initial relative phase of the modulation, Δ​ϕ0 =​ 0 and Δ​ϕ0 =​ π​/2, 
respectively. Parameters as in Fig. 2 except for the fibre length, which is 7.7 km, and the pump to signal input power ratio, which is 8.5 dB. All power plots 
are normalized to their respective maxima.
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Methods
Numerics. The simulations reported in Figs. 1 and 2 are made by integrating the 
NLSE (equation (1)) with a pseudospectral or split-step method with typical grid 
spacing Δ​T =​ 0.5 ps and Δ​Z =​ 5 cm. Boundary conditions are implicitly imposed 
on temporal windows that are a multiple of the modulation period Tm =​ 1/fm. The 
initial condition is set to Δϕ= + −E Z T P P i( , ) exp( )p s 0  [exp(i2π​fmT) +​ exp(−​i2π​
fmT)], where Pp and Ps are the pump and sideband power, respectively, which fix the 
pump to signal power ratio ∕P P10log10 p s given in the text (20 dB in Fig. 2 or 8.5 dB 
in Fig. 4, corresponding to Ps =​ 4.5 mW and Ps =​ 63.6 mW, respectively). We have 
also checked numerically that higher-order dispersion terms, as well as the Raman 
effect have a negligible impact on our results and can be neglected, so that the 
whole dynamics of the system can be accurately captured by the NLSE.

Theory. Starting from the NLSE, the description of the nonlinear stage of 
modulational instability in terms of the reduced oscillator (2), can be obtained 
as follows. The comb that develops from depleted modulational instability 
is of the form π= ∑E Z T P a Z i f T( , ) ( )exp( 2 )n n m

, where the sum is over all 
integers n =​ …​, −​2, −​1, 0, 1, 2, …​, fm is the input modulation frequency and P 
is the injected (conserved) power, a0(Z) and ±∣ ∣a Z( )n  are the complex amplitudes 
of the pump and the nth sideband pair, respectively. As the spectrum is 
triangular24 with strong decay between adjacent sidebands of increasing order 
( ω ω∣ ∣ ∕∣ ∣ = − ∕ ++a a (dB) 10log (2 ) (2 )n n1

2 2
10

 at conversion apex, for example,  
~−​8 dB at peak gain ω = 2 , as shown in ref. 18), we can accurately approximate 
the process by means of three modes (3WM, n =​ −​1, 0, 1), neglecting higher-order 
sidebands |n| ≥​ 2 that remain enslaved and phase-locked to the main pair n =​ ±​1 
on propagation. Hence, further assuming symmetric sidebands (a1 =​ a−1) as in the 
experiment, we plug into the NLSE (equation (1)) the 3WM ansatz =E Z T P( , )  
{a0(Z) +​ a1(Z)[exp(i2π​fmT) +​ exp(−​i2π​fmT)]/ 2}, and obtain coupled equations by 
grouping terms at the same frequency. Then, following the approach developed in 
refs. 31,36, we exploit the Hamiltonian structure of the resulting system of equations 
to reduce them to a one degree of freedom oscillator in terms of the conjugated 
variables η1 =​ |a1|2 =​ 1 −​ |a0|2 and Δ​ϕ =​ ϕ0 −​ ϕ1, which are found to obey the 
following evolution equations:
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where z =​ Z/Znl is the normalized distance in units of the nonlinear length 
Znl =​ (γP)−1. Clearly, H =​ H(η1,Δ​ϕ) in equation (3) takes the expression of the 
Hamiltonian reported in equation (2). The invariance of H along the motion allows 
the level curves reported in Fig. 1b to be drawn.

Experiment. Two major challenges faced in the experiment are: (1) the loss 
compensation in the 7.7-km-long SMF28, that would induce all the evolutions 
to drop on phase-shifted evolution34, thus hiding the broken symmetry of 
FPU; (2) to overcome the fading phenomenon that is likely to occur when a 
quasi-monochromatic wave is launched in an optical fibre38. The losses of the 
SMF28 are almost perfectly compensated by means of a scheme borrowed by 
telecommunication systems, which exploits a counter-propaganting wave centred 
at 1,480 nm acting as a Raman pump (see Fig. 3 and Supplementary Information 
for further information). Concerning the second issue, we remind that a random 
noise in amplitude and phase is superimposed on the backscattered light 
originating from variations of the state of the polarization of the light and/or 
from local thermomechanical fluctuations of the scattering volume. We removed 
the contribution of this detrimental linear phenomenon on the reflected pulse as 
follows. We launched two consecutive pulses in the fibre. The first one is strong 
and is responsible for the nonlinear dynamics, whereas a following weaker one 
(−​13 dB) experiences essentially linear effects. These linear effects are similar to 
those experienced by the first strong pulse because the time delay between these 
pulses is extremely short (only 102 μ​s) compared with the characteristic response 
time of thermomechanical fluctuations in the fibre. The amplitude and the phase 
of the backscattered strong signal is then corrected by means of the weak one. 
This scheme allows the contribution of the fading effect to be effectively removed 
(the effectiveness of the scheme is further discussed in the Supplementary 
Information, which shows a typical trace before and after the correction in 
Supplementary Fig. 3).

The drawback of this method is that all linear contributions are removed, 
including the phase due to the group-velocity dispersion acquired during the 
propagation. This contribution is linked to the linear phase mismatch term of the 
four-photon process underlying the occurrence of modulational instability, and can 
not be neglected. However, it can be easily restored by adding to the compensated 
phase evolution the characteristic phase term arising from group velocity 
dispersion, that is, β πf Z(2 )1

2 2 m
2 .

Data availability. Most of the relevant data used in this paper are contained 
in the Supplementary Information while further data are available from the 
corresponding authors upon reasonable request.
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